Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Immunol ; 13: 975363, 2022.
Article in English | MEDLINE | ID: covidwho-2308884

ABSTRACT

Evaluation of the safety and immunogenicity of new vaccine platforms is needed to increase public acceptance of coronavirus disease 2019 (COVID-19) vaccines. Here, we evaluated the association between reactogenicity and immunogenicity in healthy adults following vaccination by analyzing blood samples before and after sequential two-dose vaccinations of BNT162b2 and ChAdOx1 nCoV-19. Outcomes included anti-S IgG antibody and neutralizing antibody responses, adverse events, and proinflammatory cytokine responses. A total of 59 and 57 participants vaccinated with BNT162b2 and ChAdOx1 nCoV-19, respectively, were enrolled. Systemic adverse events were more common after the first ChAdOx1 nCoV-19 dose than after the second. An opposite trend was observed in BNT162b2 recipients. Although the first ChAdOx1 nCoV-19 dose significantly elevated the median proinflammatory cytokine levels, the second dose did not, and neither did either dose of BNT162b2. Grades of systemic adverse events in ChAdOx1 nCoV-19 recipients were significantly associated with IL-6 and IL-1ß levels. Anti-S IgG and neutralizing antibody titers resulting from the second BNT162b2 dose were significantly associated with fever. In conclusion, systemic adverse events resulting from the first ChAdOx1 nCoV-19 dose may be associated with proinflammatory cytokine responses rather than humoral immune responses. Febrile reactions after second BNT162b2 dose were positively correlated with vaccine-induced immune responses rather than with inflammatory responses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , Interleukin-6
2.
Infect Chemother ; 55(1): 99-104, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2269067

ABSTRACT

The immunogenicity of a heterologous vaccination regimen consisting of ChAdOx1 nCoV-19 (a chimpanzee adenovirus-vectored vaccine) followed by mRNA-1273 (a lipid-nanoparticle-encapsulated mRNA-based vaccine) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), specifically the omicron variant (B.1.1.529), is poorly studied. The aim of this study was to evaluate the neutralizing antibody activity and immunogenicity of heterologous ChAdOx1 nCoV-19 and mRNA-1273 prime-boost vaccination against wild-type (BetaCoV/Korea/KCDC03/2020), alpha, beta, gamma, delta, and omicron variants of SARS-CoV-2 in Korea. A 50% neutralizing dilution (ND50) titer was determined in serum samples using the plaque reduction neutralization test. Antibody titer decreased significantly at 3 months compared with that at 2 weeks after the 2nd dose. On comparing the ND50 titers for the above-mentioned variants of concerns, it was observed that the ND50 titer for the omicron variant was the lowest. This study provides insights into cross-vaccination effects and can be useful for further vaccination strategies in Korea.

3.
Int J Infect Dis ; 128: 112-120, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242189

ABSTRACT

OBJECTIVES: The CoV2-001 phase I randomized trial evaluated the safety and immunogenicity of the GLS-5310 bi-cistronic DNA vaccine through 48 weeks of follow-up. DESIGN: A total of 45 vaccine-naïve participants were recruited between December 31, 2020, and March 30, 2021. GLS-5310, encoding for the SARS-CoV-2 spike and open reading frame 3a (ORF3a) proteins, was administered intradermally at 0.6 mg or 1.2 mg per dose, followed by application of the GeneDerm suction device as part of a two-dose regimen spaced either 8 or 12 weeks between vaccinations. RESULTS: GLS-5310 was well tolerated with no serious adverse events reported. Antibody and T cell responses were dose-independent. Anti-spike antibodies were induced in 95.5% of participants with an average geometric mean titer of ∼480 four weeks after vaccination and declined minimally through 48 weeks. Neutralizing antibodies were induced in 55.5% of participants with post-vaccination geometric mean titer of 28.4. T cell responses were induced in 97.8% of participants, averaging 716 site forming units/106 cells four weeks after vaccination, increasing to 1248 at week 24, and remaining greater than 1000 through 48 weeks. CONCLUSION: GLS-5310 administered with the GeneDerm suction device was well tolerated and induced high levels of binding antibodies and T-cell responses. Antibody responses were similar to other DNA vaccines, whereas T cell responses were many-fold greater than DNA and non-DNA vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Suction , Viral Vaccines , COVID-19 Vaccines/administration & dosage
4.
Front Immunol ; 13: 1035441, 2022.
Article in English | MEDLINE | ID: covidwho-2228922

ABSTRACT

Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the persistence of the pandemic, even with mass coronavirus disease 2019 (COVID-19) vaccination, have raised questions about the durability of immunity and extent of cross-reactive immunity after vaccination. This study aimed to characterize the humoral and cellular immune response to the mRNA-1273 vaccine using a prospective longitudinal cohort. Methods: We recruited 177 young SARS-CoV-2 infection-naive adults. Two doses of mRNA-1273 vaccine were administered at 28-day intervals, and blood samples were collected at five time points: pre-vaccination (T0), 4 weeks after the first (T1) and second dose (T2), and 3 months (T3) and 6 months (T4) after the first dose. Anti-SARS-CoV-2 spike protein (anti-S) IgG antibody, neutralizing antibody, and T-cell immune responses were evaluated. Results: The two-dose mRNA-1273 vaccination induced robust anti-SARS-CoV-2 antibody responses, which remained higher than the titers at T1 until T4. A higher peak anti-S antibody titer at T2 was associated with better cross-reactive immunity against Delta and Omicron variants and long-lasting (anti-S IgG and neutralizing antibody) humoral immunity up to T4. The overall T-cell immune response was not correlated with peak antibody titers (T-lymphocyte subpopulation analysis was not performed). Conclusion: This study showed that an early strong antibody response is predictive of longer humoral immunity and better cross-reactive neutralizing immunity against Delta and Omicron variants.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibody Formation , COVID-19 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing , COVID-19/prevention & control , Immunoglobulin G , Prospective Studies , SARS-CoV-2 , Vaccination , Cross Reactions
6.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2207480

ABSTRACT

Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the persistence of the pandemic, even with mass coronavirus disease 2019 (COVID-19) vaccination, have raised questions about the durability of immunity and extent of cross-reactive immunity after vaccination. This study aimed to characterize the humoral and cellular immune response to the mRNA-1273 vaccine using a prospective longitudinal cohort. Methods We recruited 177 young SARS-CoV-2 infection-naive adults. Two doses of mRNA-1273 vaccine were administered at 28-day intervals, and blood samples were collected at five time points: pre-vaccination (T0), 4 weeks after the first (T1) and second dose (T2), and 3 months (T3) and 6 months (T4) after the first dose. Anti-SARS-CoV-2 spike protein (anti-S) IgG antibody, neutralizing antibody, and T-cell immune responses were evaluated. Results The two-dose mRNA-1273 vaccination induced robust anti-SARS-CoV-2 antibody responses, which remained higher than the titers at T1 until T4. A higher peak anti-S antibody titer at T2 was associated with better cross-reactive immunity against Delta and Omicron variants and long-lasting (anti-S IgG and neutralizing antibody) humoral immunity up to T4. The overall T-cell immune response was not correlated with peak antibody titers (T-lymphocyte subpopulation analysis was not performed). Conclusion This study showed that an early strong antibody response is predictive of longer humoral immunity and better cross-reactive neutralizing immunity against Delta and Omicron variants.

7.
Vaccines (Basel) ; 11(1)2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2167051

ABSTRACT

Messenger RNA (mRNA) vaccination was developed to mitigate the coronavirus disease 2019 pandemic. However, data on antibody kinetics and factors influencing these vaccines' immunogenicity are limited. We conducted a prospective study on healthy young adults who received two doses of the mRNA-1273 vaccine at 28-day intervals. After each dose, adverse events were prospectively evaluated, and blood samples were collected. The correlation between humoral immune response and reactogenicity after vaccination was determined. In 177 participants (19-55 years), the geometric mean titers of anti-S IgG antibody were 178.07 and 4409.61 U/mL, while those of 50% neutralizing titers were 479.95 and 2851.67 U/mL four weeks after the first and second vaccine doses, respectively. Anti-S IgG antibody titers were not associated with local reactogenicity but were higher in participants who experienced systemic adverse events (headache and muscle pain). Antipyretic use was an independent predictive factor of a robust anti-SARS-CoV-2 antibody response after receiving both vaccine doses. Systemic reactogenicity after the first dose influenced antibody response after the second dose. In conclusion, mRNA-1273 induced a robust antibody response in healthy young adults. Antipyretic use did not decrease the anti-SARS-CoV-2 antibody response after mRNA-1273 vaccination.

8.
Microbiol Spectr ; : e0266922, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2078749

ABSTRACT

Estimating neutralizing activity in vaccinees is crucial for predicting the protective effect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the plaque reduction neutralization test (PRNT) requires a biosafety level 3 facility, it would be advantageous if surrogate virus neutralization test (sVNT) assays and binding assays could predict neutralizing activity. Here, five different assays were evaluated with respect to the PRNT in vaccinees: three sVNT assays from GenScript, Boditech Med, and SD Biosensor and two semiquantitative binding assays from Roche and Abbott. The vaccinees were subjected to three vaccination protocols: homologous ChAdOx1, homologous BNT162b2, and heterologous administration. The ability to predict a 50% neutralizing dose (ND50) of ≥20 largely varied among the assays, with the binding assays showing substantial agreement (kappa, ~0.90) and the sVNT assays showing relatively poor performance, especially in the ChAdOx1 group (kappa, 0.33 to 0.97). The ability to predict an ND50 value of ≥118.25, indicating a protective effect, was comparable among different assays. Applying optimal cutoffs based on Youden's index, the kappa agreements were greater than 0.60 for all assays in the total group. Overall, relatively poor performance was demonstrated in the ChAdOx1 group, owing to low antibody titers. Although there were intra-assay differences related to the vaccination protocols, as well as interassay differences, all assays demonstrated fair performance in predicting the protective effect using the new cutoffs. This study demonstrates the need for a different cutoff for each assay to appropriately determine a higher neutralizing titer and suggests the clinical feasibility of using various assays for estimation of the protective effect. IMPORTANCE The coronavirus disease 2019 (COVID-19) pandemic continues to last, despite high COVID-19 vaccination rates. As many people experience breakthrough infection after prior infection and/or vaccination, estimating the neutralization activity and predicting the protective effect are major issues of concern. However, since standard neutralization tests are not available in most clinical laboratories, it would be beneficial if commercial assays could predict these aspects. In this study, we evaluated the performance of three sVNT assays and two semiquantitative binding assays targeting the receptor-binding domain with respect to the PRNT. Our results suggest that these assays could be used for predicting the protective effect by adjusting the cutoffs.

9.
Front Immunol ; 13: 968105, 2022.
Article in English | MEDLINE | ID: covidwho-2065511

ABSTRACT

Introduction: Despite vaccine development, the COVID-19 pandemic is ongoing due to immunity-escaping variants of concern (VOCs). Estimations of vaccine-induced protective immunity against VOCs are essential for setting proper COVID-19 vaccination policy. Methods: We performed plaque-reduction neutralizing tests (PRNTs) using sera from healthcare workers (HCWs) collected from baseline to six months after COVID-19 vaccination and from convalescent COVID-19 patients. The 20.2% of the mean PRNT titer of convalescent sera was used as 50% protective value, and the percentage of HCWs with protective immunity for each week (percent-week) was compared among vaccination groups. A correlation equation was deduced between a PRNT 50% neutralizing dose (ND50) against wild type (WT) SARS-CoV-2 and that of the Delta variant. Results: We conducted PRNTs on 1,287 serum samples from 297 HCWs (99 HCWs who received homologous ChAdOx1 vaccination (ChAd), 99 from HCWs who received homologous BNT162b2 (BNT), and 99 from HCWs who received heterologous ChAd followed by BNT (ChAd-BNT)). Using 365 serum samples from 116 convalescent COVID-19 patients, PRNT ND50 of 118.25 was derived as 50% protective value. The 6-month cumulative percentage of HCWs with protective immunity against WT SARS-CoV-2 was highest in the BNT group (2297.0 percent-week), followed by the ChAd-BNT (1576.8) and ChAd (1403.0) groups. In the inter-group comparison, protective percentage of the BNT group (median 96.0%, IQR 91.2-99.2%) was comparable to the ChAd-BNT group (median 85.4%, IQR 15.7-100%; P =0.117) and significantly higher than the ChAd group (median 60.1%, IQR 20.0-87.1%; P <0.001). When Delta PRNT was estimated using the correlation equation, protective immunity at the 6-month waning point was markedly decreased (28.3% for ChAd group, 52.5% for BNT, and 66.7% for ChAd-BNT). Conclusion: Decreased vaccine-induced protective immunity at the 6-month waning point and lesser response against the Delta variant may explain the Delta-dominated outbreak of late 2021. Follow-up studies for newly-emerging VOCs would also be needed.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Cohort Studies , Humans , Immunization, Passive , Kinetics , Pandemics , Prospective Studies , Republic of Korea/epidemiology , SARS-CoV-2 , Vaccination , COVID-19 Serotherapy
10.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2034017

ABSTRACT

Evaluation of the safety and immunogenicity of new vaccine platforms is needed to increase public acceptance of coronavirus disease 2019 (COVID-19) vaccines. Here, we evaluated the association between reactogenicity and immunogenicity in healthy adults following vaccination by analyzing blood samples before and after sequential two-dose vaccinations of BNT162b2 and ChAdOx1 nCoV-19. Outcomes included anti-S IgG antibody and neutralizing antibody responses, adverse events, and proinflammatory cytokine responses. A total of 59 and 57 participants vaccinated with BNT162b2 and ChAdOx1 nCoV-19, respectively, were enrolled. Systemic adverse events were more common after the first ChAdOx1 nCoV-19 dose than after the second. An opposite trend was observed in BNT162b2 recipients. Although the first ChAdOx1 nCoV-19 dose significantly elevated the median proinflammatory cytokine levels, the second dose did not, and neither did either dose of BNT162b2. Grades of systemic adverse events in ChAdOx1 nCoV-19 recipients were significantly associated with IL-6 and IL-1β levels. Anti-S IgG and neutralizing antibody titers resulting from the second BNT162b2 dose were significantly associated with fever. In conclusion, systemic adverse events resulting from the first ChAdOx1 nCoV-19 dose may be associated with proinflammatory cytokine responses rather than humoral immune responses. Febrile reactions after second BNT162b2 dose were positively correlated with vaccine-induced immune responses rather than with inflammatory responses.

13.
Front Cell Infect Microbiol ; 12: 948014, 2022.
Article in English | MEDLINE | ID: covidwho-1963409

ABSTRACT

With the emergence and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants, escaping vaccine-induced immunity is a concern. Three vaccination schedules, homologous or heterologous, have been initially applied due to an insufficient supply of vaccines in Korea. We investigated neutralizing activities against Omicron and Delta variants in each schedule. Three schedules using three doses of the BNT162b2 (BNT) or the ChAdOx1 (ChAd) vaccines include ChAd-ChAd-BNT, ChAd-BNT-BNT, and BNT-BNT-BNT. Neutralizing activities were evaluated using plaque-reduction neutralization test (PRNT) against wild type (WT) SARS-CoV-2, Delta variant, and Omicron variant. A total of 170 sera from 75 participants were tested, and the baseline characteristics of participants were not significantly different between groups. After the 2nd vaccine dose, geometric mean titers of PRNT ND50 against WT, Delta, and Omicron were highest after ChAd-BNT vaccination (2,463, 1,097, and 107) followed by BNT-BNT (2,364, 674, and 38) and ChAd-ChAd (449, 163, and 25). After the 3rd dose of BNT, the increase of PRNT ND50 against WT, Delta, and Omicron was most robust in ChAd-ChAd-BNT (4,632, 988, and 260), while the BNT-BNT-BNT group showed the most augmented neutralizing activity against Delta and Omicron variants (2,315 and 628). ChAd-BNT-BNT showed a slight increase of PRNT ND50 against WT, Delta, and Omicron (2,757, 1,279, and 230) compared to the 2nd dose. The results suggest that a 3rd BNT booster dose induced strengthened neutralizing activity against Delta and Omicron variants. The waning of cross-reactive neutralizing antibodies after the 3rd dose and the need for additional boosting should be further investigated.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , SARS-CoV-2/genetics , Vaccination
14.
Epidemiol Health ; 44: e2022028, 2022.
Article in English | MEDLINE | ID: covidwho-1939239

ABSTRACT

OBJECTIVES: The Korea National Health and Nutrition Examination Survey (KNHANES) is a nationwide cross-sectional surveillance system that assesses the health and nutritional status of the Korean population. To evaluate the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the community, we investigated the prevalence of anti-SARS-CoV-2 antibodies in the sera of KNHANES participants. METHODS: Subjects were recruited between April 24 and December 12, 2020. In total, 5,284 subjects aged 10-90 years from 17 regions participated. SARS-CoV-2 antibodies were screened using the Elecsys Anti-SARS-CoV-2 assay. Positive samples were verified using 4 different SARS-CoV-2 antibody assays and the plaque reduction neutralizing test. The final seropositivity criteria were a positive screening test and at least 1 positive result from the 5 additional tests. RESULTS: Almost half (49.2%; 2,600/5,284) of participants were from metropolitan areas, 48.9% were middle-aged (40-69 years), and 20.5% were in their 20s or younger. The seropositivity rate was 0.09% (5/5,284). Three of the 5 antibody-positive subjects had a history of infection, of whom 2 were infected abroad and 1 was infected in a local cluster outbreak. CONCLUSIONS: The low SARS-CoV-2 antibody seroprevalence in Korea indicates that there have been few coronavirus disease 2019 (COVID-19) cases due to successful COVID-19 management measures (e.g., diagnostic tests for overseas arrivals, national social distancing, and strict quarantine measures). Moreover, asymptomatic infections were uncommon due to active polymerase chain reaction testing. However, hidden infections may exist in the community, requiring the continuation of quarantine and vaccination measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Middle Aged , Nutrition Surveys , Republic of Korea , Seroepidemiologic Studies
15.
J Korean Med Sci ; 37(27): e210, 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1933612

ABSTRACT

BACKGROUND: As the coronavirus disease 2019 (COVID-19) pandemic continues, there are concerns regarding waning immunity and the emergence of viral variants. The immunogenicity of Ad26.COV2.S against wild-type (WT) and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs to be evaluated. METHOD: This prospective cohort study was conducted between June 2021 and January 2022 at two university hospitals in South Korea. Healthy adults who were scheduled to be vaccinated with Ad26.COV2.S were enrolled in this study. The main outcomes included anti-spike (S) IgG antibody and neutralizing antibody responses, S-specific T-cell responses (interferon-γ enzyme-linked immunospot assay), solicited adverse events (AEs), and serious AEs. RESULTS: Fifty participants aged ≥ 19 years were included in the study. Geometric mean titers (GMTs) of anti-S IgG were 0.4 U/mL at baseline, 5.2 ± 3.0 U/mL at 3-4 weeks, 55.7 ± 2.4 U/mL at 5-8 weeks, and 81.3 ± 2.5 U/mL at 10-12 weeks after vaccination. GMTs of 50% neutralizing dilution (ND50) against WT SARS-CoV-2 were 164.6 ± 4.6 at 3-4 weeks, 313.9 ± 3.6 at 5-8 weeks, and 124.4 ± 2.6 at 10-12 weeks after vaccination. As for the S-specific T-cell responses, the median number of spot-forming units/106 peripheral blood mononuclear cell was 25.0 (5.0-29.2) at baseline, 60.0 (23.3-178.3) at 5-8 weeks, and 35.0 (13.3-71.7) at 10-12 weeks after vaccination. Compared to WT SARS-CoV-2, ND50 against Delta and Omicron variants was attenuated by 3.6-fold and 8.2-fold, respectively. The most frequent AE was injection site pain (82%), followed by myalgia (80%), fatigue (70%), and fever (50%). Most AEs were grade 1-2, and resolved within two days. CONCLUSION: Single-dose Ad26.COV2.S was safe and immunogenic. NAb titer and S-specific T-cell immunity peak at 5-8 weeks and rather decrease at 10-12 weeks after vaccination. Cross-reactive neutralizing activity against the Omicron variant was negligible.


Subject(s)
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Humans , Leukocytes, Mononuclear , Prospective Studies
16.
Clin Microbiol Infect ; 28(10): 1390.e1-1390.e7, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1850888

ABSTRACT

OBJECTIVES: We assessed humoral responses and reactogenicity following the heterologous vaccination compared to the homologous vaccination groups. METHODS: We enrolled healthcare workers (HCWs) who were either vaccinated with ChAdOx1 followed by BNT162b2 (heterologous group) or 2 doses of ChAdOx1 (ChAdOx1 group) or BNT162b2 (BNT162b2 group). Immunogenicity was assessed by measuring antibody titers against receptor-binding domain (RBD) of SARS-CoV-2 spike protein in all participants and neutralizing antibody titer in 100 participants per group. Reactogenicity was evaluated by a questionnaire-based survey. RESULTS: We enrolled 499 HCWs (ChAdOx1, n = 199; BNT162b2, n = 200; heterologous ChAdOx1/BNT162b2, n = 100). The geometric mean titer of anti-receptor-binding domain antibody at 14 days after the booster dose was significantly higher in the heterologous group (11 780.55 binding antibody unit (BAU)/mL [95% CI, 10 891.52-12 742.14]) than in the ChAdOx1 (1561.51 [95% CI, 1415.03-1723.15]) or BNT162b2 (2895.90 [95% CI, 2664.01-3147.98]) groups (both p < 0.001). The neutralizing antibody titer of the heterologous group (geometric mean ND50, 2367.74 [95% CI, 1970.03-2845.74]) was comparable to that of the BNT162b2 group (2118.63 [95% CI, 1755.88-2556.32]; p > 0.05) but higher than that of the ChAdOx1 group (391.77 [95% CI, 326.16-470.59]; p < 0.001). Compared with those against wild-type SARS-CoV-2, the geometric mean neutralizing antibody titers against the Delta variant at 14 days after the boosting were reduced by 3.0-fold in the heterologous group (geometric mean ND50, 872.01 [95% CI, 685.33-1109.54]), 4.0-fold in the BNT162b2 group (337.93 [95% CI, 262.78-434.57]), and 3.2-fold in the ChAdOx1 group (206.61 [95% CI, 144.05-296.34]). The local or systemic reactogenicity after the booster dose in the heterologous group was higher than that of the ChAdOx1 group but comparable to that of the BNT162b2 group. DISCUSSION: Heterologous ChAdOx1 followed by BNT162b2 vaccination with a 12-week interval induced a robust humoral immune response against SARS-CoV-2, including the Delta variant, that was comparable to the homologous BNT162b2 vaccination and stronger than the homologous ChAdOx1 vaccination, with a tolerable reactogenicity profile.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
17.
Immune Netw ; 21(6): e38, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1626637

ABSTRACT

Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (B.1.1.529) Omicron variant originated from South Africa in the middle of November 2021. SARS-CoV-2 is also called coronavirus disease 2019 (COVID-19) since SARS-CoV-2 is the causative agent of COVID-19. Several studies already suggested that the SARS-CoV-2 Omicron variant would be the fastest transmissible variant compared to the previous 10 SARS-CoV-2 variants of concern, interest, and alert. Few clinical studies reported the high transmissibility of the Omicron variant but there is insufficient time to perform actual experiments to prove it, since the spread is so fast. We analyzed the SARS-CoV-2 Omicron variant, which revealed a very high rate of mutation at amino acid residues that interact with angiostatin-converting enzyme 2. The mutation rate of COVID-19 is faster than what we prepared vaccine program, antibody therapy, lockdown, and quarantine against COVID-19 so far. Thus, it is necessary to find better strategies to overcome the current crisis of COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL